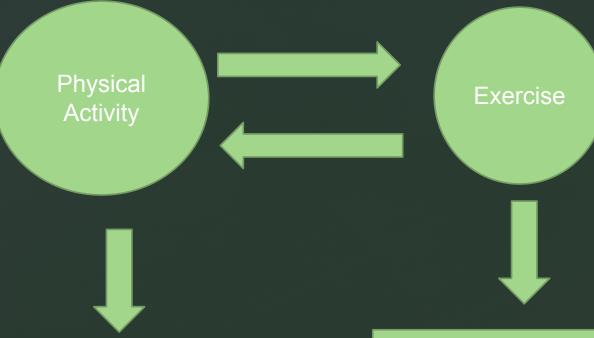
Exercise as a Rehabilitation Tool for patients with Neurological Disorders

Rotem Soll (MscPT)

Aim of the Course



- To identify the challenges of adjusting exercise for individuals with neurological disorders
- To understand the Neurophysiological Effect of exercise on Neurological impairment
- Understand the effect of exercise on fatigue, cognition and spasticity in Neurological Disorders
- Build exercise programs for individuals with Neurological Disorders

PEDOMETER PEDOMETER MEDOSSA MEDOSSA MEDOSSA MEDOSSA MEDOSA MEDOSA MEDOSA MEDOMETER MEDOSA MED

...Just a reminder

Every movement that is carried out by the skeletal muscles that requires Energy. A physical Activity which is structured, planned, repetitive and intentional in order to maintain /improve physical fitness

Pelar 125

10

Q

4-6

2-3

RPE Chart

Rate of Perceived Exertion

Max Effort Activity

Feels almost impossible to keep going, Completely out of breathe, unable to tail

Very Hard Activity

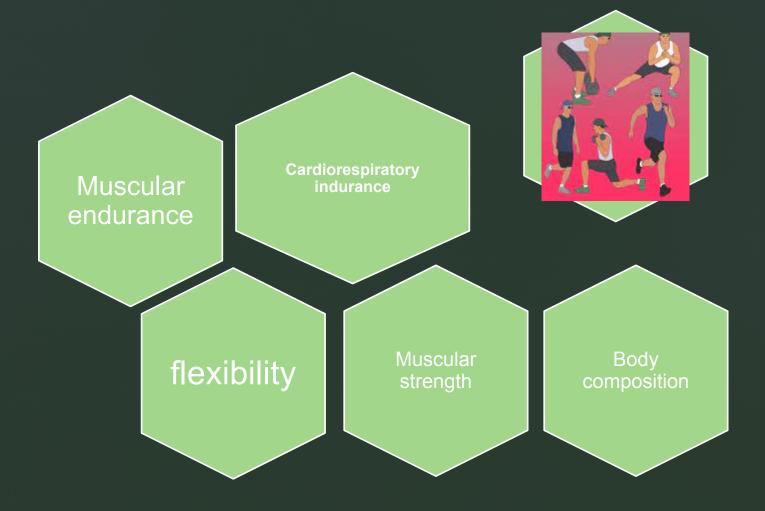
Very difficult to maintain exercise intensity. Can barely breath and speak a single word.

Vigorous Activity

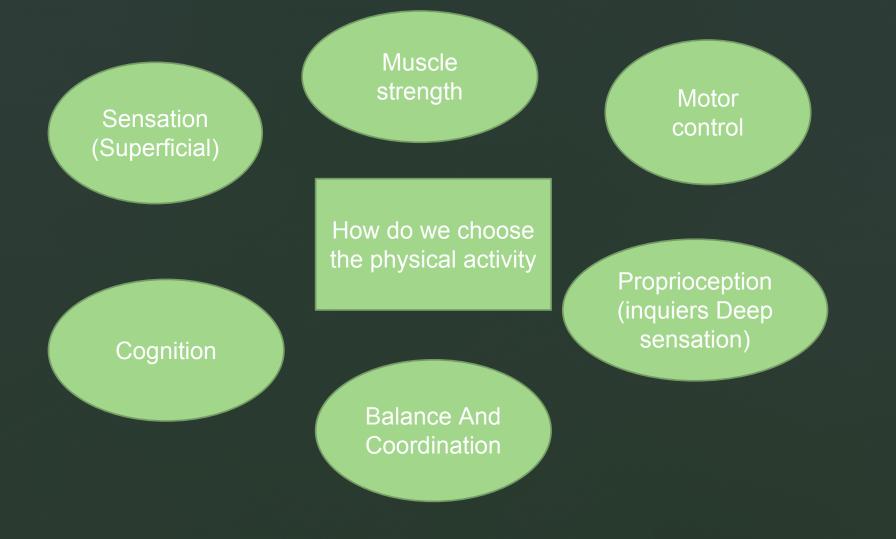
7-8 On the verge of becoming uncomfortable. Short of breath, can speak a sentence.

Moderate Activity

Feels like you can exercise for hours. Breathing heavily, can hold short conversation.


Light Activity Feels like you can maintain fo

Feels like you can maintain for hours. Easy to breathe and carry a conversation.


Very Light Activity

Anything other than sleeping, watching TV, riding in a car, etc.

The Components of physical fitness

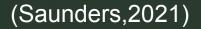
Challenges of exercise with a Neurological Disorder

Parameters and Evaluation of exercise

- Intensity
- Duration
- Frequency
- Internal/External Representation AND focus (Ques)
- Inner /outer Motivation

Sarcopenia (Marzetti, 2017)

Aims of exercise with a Neurological Disorder


- Prevention
- Prevention of secondary complications due to sedentary lifestyle (e.g after stroke..)
- Improving quality of life with a chronic neurological illness

(Richardson, 2018)

Neurophysiological effect of sedentary Lifestyle

- Lack of muscle activity
- suppression of Skeletal muscle lipoprotein lipase (LPL)
- Decreased Levels of HDL cholesterol
- Increased Triglycerids, Insulin resistance and glucose Intolerance

Neuroplasticity of the Brain and exercise

- Treadmill exercise (High intensity Aerobic Exercise) created a Neuroplastic response in the motor cortex (Mellow, 2020)
- Increase of Neurotrophins
- Improvement of synaptic function and structure
- Accelaration of neural function reorganization
- Fascilitating a compensation beyond the infracted tissue

Benefits of exercise with a Neurological Disorder

- Gaining Aerobic capacity (Richardson, 2018)
- Gaining task specific abilities with functional exercise
- Improving Gait components: speed, stride length, balance, confidence
- Increase Overall Physical Activity Levels (minimizing sedentary)

behavior)

- Secondary prevention in acute neurological disorders
- Self efficacy (Bandura- an individual's perception of or confidence in his or own ability to complete a behavioral sequence to achieve a specific goal)

Self efficacy was the most common Reliable predictor of exercise Behavior

(Suskin, 2018)

- Beliefs about PA
- Feelings (" IT is all my fault..")
- Depression
- Fatigue
- What is self determination ?

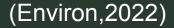
Additional challenges in adapting to a Healthy lifestyle

- Persistency
- Motivation
- Lack of structured programs
- Adapting to new changes (Especially in chronic patients)
- Most of the programs are developed for research purpose <u>limited in time</u>!
- Self-management or structured-group program

Aerobic or Resistance Training for Improving physical function in MS patient

(Laurits, 2021)

- What exercise suits me the Best?
- Parameters needed to measure Improvement: Muscle strength, VO2MAX, 6MWT, Fatigue
- There was no difference between AT AND RT In all parameters
- Only some of the studies reported physical adaptations although the physical function has improved.


Cerebro Vascular Accident

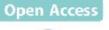
- Stroke survivors sit for more than 10 hours a day (Kerr,2015)
- Sitting time is the highest During the first year after stroke (Paul, 2016)
- 50% of stroke survivors do not match their recommended step count (English , 2014)

Age	Steps Per Day: Minimum	Steps Per Day: Active	Steps Per Day: Highly Active	
4-6 years old	6,000 steps	10,000 steps	14,500 steps	
6-11 years old (female)	6,000 steps	11,000 ste <mark>p</mark> s	13,500 steps	
6-11 years old (male)	6,000 steps	13,000 steps	15,500 steps	
12-19 years old	6,000 steps	10,000 steps	12,500 steps	
20-65 years old	3,000 steps	7,000 steps	11,500 steps	
65) years old	3,000 steps	7,000 steps	10 <mark>,500 ste</mark> ps	

Cerebro Vascular Accident Modifying the risk factors for a second stroke

- Blood pressure (In rest and Exercise)
- Improvement in BP at submaximal load was reported but not in rest HR after Stroke (only in people with light to moderate Disability)
- Dyslipidemia (It was not improved due to exercise in people with Modified Disability)
- Diabetes Mellitus (Improvement in insulin sensitivity and glucose tolerance)

Richardson et al. Trials (2018) 19:39 DOI 10.1186/s13063-017-2416-3


STUDY PROTOCOL

FIT for FUNCTION: study protocol for a randomized controlled trial

Julie Richardson^{1*}^(B), Ada Tang¹, Gordon Guyatt², Lehana Thabane^{2,3}, Feng Xie^{2,4}, Demetrics Sahlas^{5,6}, Robert Hart^{5,7}, Rebecca Fleck⁶, Genevieve Hladysh⁸ and Louise Macrae⁵

- 12 weeks
- Self management Education Program
- 60 minutes --twice a week
- Warm up, task-oriented strengthening and cardiovascular conditioning, Mobility and balance, cool down.

Acta Myologica • 2019; XXXVIII: p. 215-232

Exercise therapy for muscle and lower motor neuron diseases

AISHA MUNAWAR SHEIKH, JOHN VISSING Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark

- A notion being that contractions in the pathological muscle would damage and accelerate the disease process (tried in mice with duchenne)- Electrical stimulation and eccentric contraction)
- Higher chance to develop a metabolic syndrome due to restricted mobility among patients with LMN diseases
- Moderate intensity aerobic and strength exercise has many benefits for patients with LMN, no muscle damage nut it should be <u>planned</u> and <u>well monitored</u>.

Research

JAMA Neurology | Original Investigation

Effects of Mindfulness Yoga vs Stretching and Resistance Training Exercises on Anxiety and Depression for People With Parkinson Disease A Randomized Clinical Trial

Jojo Y. Y. Kwok, PhD, MPH, BN, RN; Jackie C. Y. Kwan, MSocSc, PDMH, BSW, RSW; M. Auyeung, MBChB; Vincent C. T. Mok, MD, MBBS; Claire K. Y. Lau, MSc, BN, APN; K. C. Choi, BSc, PhD; Helen Y. L. Chan, PhD, BSN, RN

- Anxiety and Depressive Symptoms
- Severity of motor symptoms
- HRQOL(Health Related Quality Of Life)
- Referring the specific parameters, yoga and mindfulness were found to be as effective as SRTE for individuals with mild to moderate parkinson

(Kwok,2019)

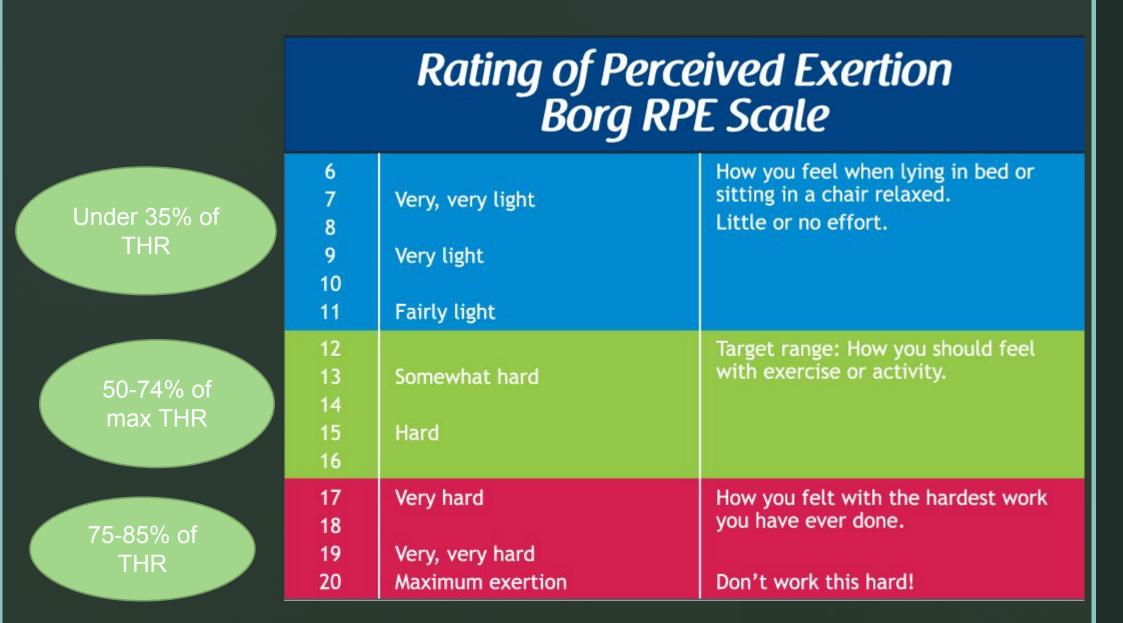
Evaluation of exercise and fitness among individuals with Neurological Disorders

- Treadmill testing
- Walking tests: Timed up and go, 6MWT
- Quality of life (HRQOL)
- Fatigue test (we will talk about it in the next lessons)
- Spasticity (we will talk about it in the next lessons)
- Exercise physiology parameters for assessing intensity of exercise (carvonan, ECG, RPE/BORG)

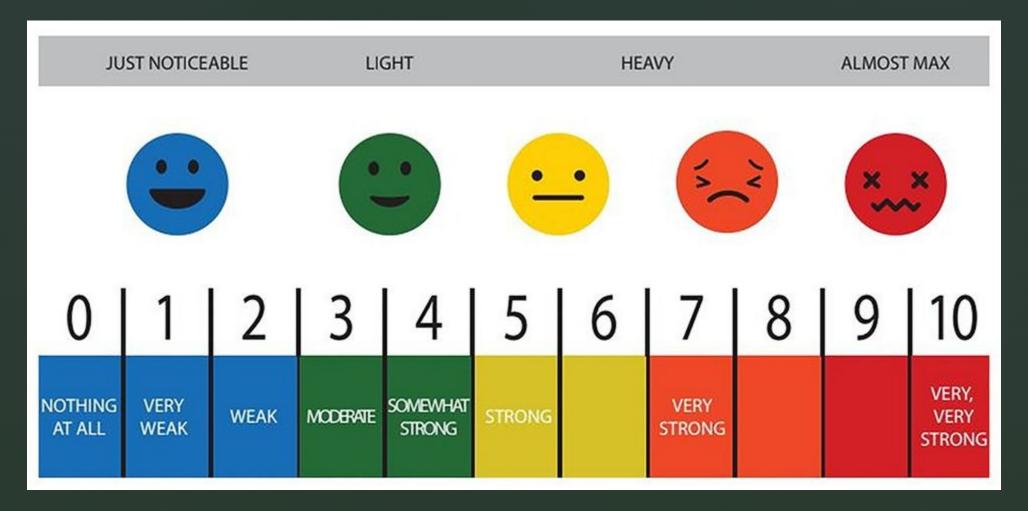
Karvonan formula

- Maximum HR- WOMEN 200-AGE, MEN -220-AGE
- Resting HR- monitored in the morning before you get out of bed or after 10 minutes of sitting
- Heart rate reserve is MHR- RHR
- Double it by intensity (%)
- Add resting HR

(HR max-HRrest)* % intensity+ Hrrest= Target HR


Target Zone	% Intensity		
Maximum VO ₂ Max Zone	90% - 100%		
Hard Anaerobic Zone	80% - 90%		
Moderate Aerobic Zone	70% - 80%		
Light Fat Burn Zone	60% - 70%		
Very Light Warm Up Zone	50% - 60%		

RPE


E Scale	Rate of Perceived Exertion
10	Max Effort Activity Feels almost impossible to keep going. Completely out of breath, unable to talk. Cannot maintain for more than a very short time.
9	Very Hard Activity Very difficult to maintain exercise intensity. Can barely breath and speak only a few words
7-8	Vigorous Activity Borderline uncomfortable. Short of breath, can speak a sentence.
4-6	Moderate Activity Breathing heavily, can hold short conversation. Still somewhat comfortable, but becoming noticeably more challenging.
2-3	Light Activity Feels like you can maintain for hours. Easy to breathe and carry a conversation
1	Very Light Activity Hardly any exertion, but more than sleeping, watching TV, etc

RPE

BORG SCALE

Graphic version of the BORG Scale _

Fourth week	Third week	second week	First week		
				40-55% of Intensity	
				55-70% of Intensity	
				70-80% of intensity	
Did you reach the THR?		If not, why	/?	feel the ex	did you during xercise after ?